deepseek integrated succesfully
This commit is contained in:
parent
0896dd46d1
commit
bf532ba35d
3
apps/admin/.env.example
Normal file
3
apps/admin/.env.example
Normal file
@ -0,0 +1,3 @@
|
||||
# DeepSeek AI API Key
|
||||
# Get your API key from https://platform.deepseek.com/
|
||||
DEEPSEEK_API_KEY=your_deepseek_api_key_here
|
||||
Binary file not shown.
@ -3,7 +3,7 @@ import { getDatabase } from "@/lib/database";
|
||||
|
||||
export async function POST(req: Request) {
|
||||
try {
|
||||
const { userId } = await req.json();
|
||||
const { userId, useExternalModel } = await req.json();
|
||||
|
||||
if (!userId) {
|
||||
return NextResponse.json({ error: "User ID is required" }, { status: 400 });
|
||||
@ -21,7 +21,7 @@ export async function POST(req: Request) {
|
||||
);
|
||||
}
|
||||
|
||||
// Construct prompt for Ollama
|
||||
// Construct prompt
|
||||
const prompt = `
|
||||
You are a professional fitness trainer and nutritionist.
|
||||
Generate a detailed daily recommendation for a user with the following profile:
|
||||
@ -42,14 +42,94 @@ export async function POST(req: Request) {
|
||||
}
|
||||
`;
|
||||
|
||||
// Call Ollama
|
||||
let parsedResponse;
|
||||
|
||||
if (useExternalModel) {
|
||||
// Use DeepSeek AI
|
||||
const deepseekApiKey = process.env.DEEPSEEK_API_KEY;
|
||||
|
||||
if (!deepseekApiKey) {
|
||||
return NextResponse.json(
|
||||
{ error: "DeepSeek API key not configured" },
|
||||
{ status: 500 }
|
||||
);
|
||||
}
|
||||
|
||||
console.log("Using DeepSeek AI model...");
|
||||
|
||||
const deepseekResponse = await fetch("https://api.deepseek.com/v1/chat/completions", {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": `Bearer ${deepseekApiKey}`,
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: "deepseek-chat",
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: "You are a professional fitness trainer and nutritionist. Always respond with valid JSON only, no markdown or code blocks."
|
||||
},
|
||||
{
|
||||
role: "user",
|
||||
content: prompt
|
||||
}
|
||||
],
|
||||
temperature: 0.7,
|
||||
max_tokens: 1000,
|
||||
}),
|
||||
});
|
||||
|
||||
if (!deepseekResponse.ok) {
|
||||
const errorText = await deepseekResponse.text();
|
||||
console.error("DeepSeek API error:", errorText);
|
||||
return NextResponse.json(
|
||||
{ error: "Failed to generate recommendation from DeepSeek AI" },
|
||||
{ status: 500 }
|
||||
);
|
||||
}
|
||||
|
||||
const deepseekData = await deepseekResponse.json();
|
||||
console.log("Raw DeepSeek Response:", deepseekData);
|
||||
|
||||
try {
|
||||
const content = deepseekData.choices[0].message.content;
|
||||
let cleanResponse = content.trim();
|
||||
|
||||
// Remove markdown code blocks if present
|
||||
if (cleanResponse.startsWith("```json")) {
|
||||
cleanResponse = cleanResponse.replace(/^```json\s*/, "").replace(/\s*```$/, "");
|
||||
} else if (cleanResponse.startsWith("```")) {
|
||||
cleanResponse = cleanResponse.replace(/^```\s*/, "").replace(/\s*```$/, "");
|
||||
}
|
||||
|
||||
// Find the first '{' and last '}' to extract the JSON object
|
||||
const firstBrace = cleanResponse.indexOf("{");
|
||||
const lastBrace = cleanResponse.lastIndexOf("}");
|
||||
|
||||
if (firstBrace !== -1 && lastBrace !== -1) {
|
||||
cleanResponse = cleanResponse.substring(firstBrace, lastBrace + 1);
|
||||
}
|
||||
|
||||
parsedResponse = JSON.parse(cleanResponse);
|
||||
} catch (e) {
|
||||
console.error("Failed to parse DeepSeek response:", deepseekData);
|
||||
return NextResponse.json(
|
||||
{ error: "Invalid response format from DeepSeek AI" },
|
||||
{ status: 500 }
|
||||
);
|
||||
}
|
||||
} else {
|
||||
// Use local Ollama
|
||||
console.log("Using local Ollama model...");
|
||||
|
||||
const ollamaResponse = await fetch("http://localhost:11434/api/generate", {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: "gemma3:latest", // Make sure this model is pulled
|
||||
model: "gemma3:latest",
|
||||
prompt: prompt,
|
||||
stream: false,
|
||||
format: "json",
|
||||
@ -59,17 +139,15 @@ export async function POST(req: Request) {
|
||||
if (!ollamaResponse.ok) {
|
||||
console.error("Ollama API error:", await ollamaResponse.text());
|
||||
return NextResponse.json(
|
||||
{ error: "Failed to generate recommendation from AI service" },
|
||||
{ error: "Failed to generate recommendation from Ollama" },
|
||||
{ status: 500 }
|
||||
);
|
||||
}
|
||||
|
||||
const aiData = await ollamaResponse.json();
|
||||
console.log("Raw AI Response:", aiData.response);
|
||||
console.log("Raw Ollama Response:", aiData.response);
|
||||
|
||||
let parsedResponse;
|
||||
try {
|
||||
// Helper to clean up the response
|
||||
let cleanResponse = aiData.response.trim();
|
||||
|
||||
// Remove markdown code blocks if present
|
||||
@ -89,19 +167,19 @@ export async function POST(req: Request) {
|
||||
|
||||
parsedResponse = JSON.parse(cleanResponse);
|
||||
} catch (e) {
|
||||
// Fallback if model doesn't return perfect JSON despite instruction
|
||||
console.error("Failed to parse AI response:", aiData.response);
|
||||
console.error("Failed to parse Ollama response:", aiData.response);
|
||||
return NextResponse.json(
|
||||
{ error: "Invalid response format from AI model" },
|
||||
{ error: "Invalid response format from Ollama" },
|
||||
{ status: 500 }
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Save to database
|
||||
const recommendation = await db.createRecommendation({
|
||||
id: crypto.randomUUID(),
|
||||
userId,
|
||||
fitnessProfileId: profile.userId, // Using userId as ID for now since it's 1:1
|
||||
fitnessProfileId: profile.userId,
|
||||
type: 'ai_plan',
|
||||
content: parsedResponse.recommendationText,
|
||||
activityPlan: parsedResponse.activityPlan,
|
||||
|
||||
@ -26,6 +26,7 @@ export default function RecommendationsPage() {
|
||||
const [pendingRecommendations, setPendingRecommendations] = useState<any[]>([]);
|
||||
const [loading, setLoading] = useState(true);
|
||||
const [generating, setGenerating] = useState<string | null>(null);
|
||||
const [useExternalModel, setUseExternalModel] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
fetchData();
|
||||
@ -56,7 +57,7 @@ export default function RecommendationsPage() {
|
||||
const res = await fetch("/api/recommendations/generate", {
|
||||
method: "POST",
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: JSON.stringify({ userId }),
|
||||
body: JSON.stringify({ userId, useExternalModel }),
|
||||
});
|
||||
|
||||
if (!res.ok) {
|
||||
@ -143,7 +144,29 @@ export default function RecommendationsPage() {
|
||||
|
||||
return (
|
||||
<div className="container mx-auto py-10 px-4">
|
||||
<h1 className="text-3xl font-bold mb-8">AI Recommendations</h1>
|
||||
<div className="flex justify-between items-center mb-8">
|
||||
<h1 className="text-3xl font-bold">AI Recommendations</h1>
|
||||
|
||||
{/* Model Selection Toggle */}
|
||||
<div className="flex items-center gap-3 bg-white px-4 py-2 rounded-lg shadow">
|
||||
<span className="text-sm font-medium text-gray-700">
|
||||
{useExternalModel ? "DeepSeek AI" : "Local Ollama"}
|
||||
</span>
|
||||
<button
|
||||
onClick={() => setUseExternalModel(!useExternalModel)}
|
||||
className={`relative inline-flex h-6 w-11 items-center rounded-full transition-colors ${useExternalModel ? "bg-blue-600" : "bg-gray-300"
|
||||
}`}
|
||||
>
|
||||
<span
|
||||
className={`inline-block h-4 w-4 transform rounded-full bg-white transition-transform ${useExternalModel ? "translate-x-6" : "translate-x-1"
|
||||
}`}
|
||||
/>
|
||||
</button>
|
||||
<span className="text-xs text-gray-500">
|
||||
{useExternalModel ? "External" : "Local"}
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div className="grid grid-cols-1 lg:grid-cols-2 gap-8">
|
||||
{/* Generate Section */}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user